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J .  Phys.: Condens. Matter 2 (1990) 2479-2486. Printed in the UK 

LETTER TO THE EDITOR 

Extrema1 properties of the Harris energy functional 

E Zaremba 
Department of Physics, Queen’s University. Kingston, Ontario K7L 3N6, Canada 

Received 4 December 1989 

Abstract. We show that the energy functional defined by Harris has a local maximum at the 
exact ground-state density of an electronic system provided the dielectric screening matrix 
of the system has eigenvalues that are all greater than unity. 

Recently Harris (1985), and independently Foulkes and Haydock (1989), introduced an 
approximate energy functional for the calculation of ground-state electronic properties. 
The functional is based on the Kohn-Sham (Kohn and Sham 1965) implementation of 
density functional theory (Hohenberg and Kohn 1964) and was motivated by the need 
for simplified but accurate computational schemes for complex electronic systems. The 
application envisaged by Harris was to the interaction between well defined units, or 
fragments, such as atoms in a molecule or solid. In this sense it complements the quasi- 
atom (Stott and Zaremba 1980) or effective medium (Norskov and Lang 1980) theories 
which focus on the energetics of an atom in an arbitrary electronic host environment. 
Harris’ fragment formula has proved to be remarkably successful and is therefore an 
important addition to the arsenal of computational tools available for electronic structure 
calculations. 

By its construction, the Harris functional is stationary about the exact ground- 
state density of the system but the sign of the error in the energy estimate was left 
undetermined. In applications to molecules (Harris 1985), the Harris functional was 
found to yield binding energies which were close to those of self-consistent calculations 
(Painter and Averill 1982) but the error was sometimes positive and sometimes negative. 
This comparison is somewhat inconclusive, however, since the two sets of calculations 
are based on slightly different energy functionals and make use of different numerical 
techniques. Subsequently, Polatoglou and Methfessel (1988) applied the Harris func- 
tional to the calculation of the cohesive energy of solids and almost invariably found 
values that exceeded (albeit slightly) their own self-consistent results. More recently, 
Finnis (1990) applied the method to a thin slab of aluminium and likewise obtained 
energies with the Harris functional that lay below the self-consistent values. In view of 
these results he conjectured that the Harris functional is a maximum at the exact ground- 
state density and therefore admits a variational principle, at least locally within the 
vicinity of the extremum. It is clearly imperative to establish the conditions under which 
the Harris functional can be used variationally. This is the problem we address in this 
letter. We find that the Harris functional does indeed have a local maximum at the 
true ground-state density, unless the electronic system possesses anomalous screening 
properties. A precise statement of this conclusion follows. 
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We first establish our notation and summarise some of the salient features of density 
functional theory. The energy functional defined by Hohenberg and Kohn (1964) is 
written as 

E,[n] = j nu + F[n] (1) 

where U is an external potential acting on the electronicsystem. Fis auniversalfunctional 
of the density which can be partitioned as 

The first term on the right, T [ n ] ,  is the kinetic energy of a non-interacting system of 
electrons with density n ( r ) ,  the second term is the classical electrostatic self-energy of the 
electronic charge distribution and the remainder, Exc[n], is by definition the exchange- 
correlation energy functional. We make the usual assumptions regarding the u-rep- 
resentability of all density distributions considered. Equation (1) also serves for a non- 
interacting system of fermions with the replacement of F by T.  

According to the Hohenberg-Kohn theorem, E,[n] is a minimum at the true ground- 
state density, nsc. The superscript denotes ‘self-consistent’ and is used here to indicate 
the connection with the usual Kohn-Sham self-consistency procedure in which T[n]  
is given in terms of the eigenfunctions and eigenvalues of an independent particle 
Schrodinger equation: 

i 
(3) 

The effective potential, ueff ,  is a functional of n and the set of equations (4a)-(4c) is 
usually solved using an iterative technique that ensures convergence to the final density 
nsc. 

More generally, nsc is determined by the Euler equation 

(GE,/Sn)l,sc = U + (6F/6n)lnsc = 0. ( 5 )  

For small deviations of the density from nsc (an = n - nsc), E,[n] can be expanded about 
nsc with the result 
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The symmetric kernel K(r ,  r ’ )  defined by this equation is a ground-state property of the 
electronic system. According to (2) it has the form 

K(r ,  r’)  = (62T/6n2)Insc + l/ir - r’l + (82Exc/6ll2)lnSC. (7) 

Ko(r ,  r’)  = (S2T/6n2)lnsc (8) 

K(r ,  r’)  = K o ( r ,  r ’ )  + C(r ,  r’)  (9) 

We can similarly define 

for a non-interacting system, so 

where 

C(r,  r’) = 1/1r - r’/  + (6’ExC/Gn(r) Sn(r’))[,sc 

represents an effective electron-electron interaction. By the variational principle, K is 
a positive definite operator in the sense that 6 E ,  is positive for any non-trivial density 
fluctuation 6n. KO also has this property since the energy functional 

E;,[n] = 1 nuo + T[n]  

is also stationary about some density no: 

U0 + (6T/6n)ln, = 0. (11) 

With u o  = us,cff, the effective potential obtained with nsc, no = nsc. 

Taking the variation of ( 5 )  with respect to U we find 
The kernels defined in (7)-(10) are in fact related to density response functions. 

which relates the induced density 6n to the perturbation 6 u .  Alternatively, we have by 
linear response theory, 

6n = 1x6” (13) 

where ~ ( r ,  r ’ )  is the static density response function of the system. Comparing (12) and 
(13) we have 

K =  -x-l (14) 

Ko = -xi’. (15) 

and similarly 

In terms of x, equation (6) becomes 

6 E , [ n ]  = -i 11 6u(r) ~ ( r ,  r ’ )  du(r ’ )  (16) 

and so, according to these definitions, x is negative definite. 
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From (9) , (14) and (15) we find 

which defines the dielectric matrix 
x = (xi' - c)-1 = xo(l - cxo)-' = xoe- '  

& = 1 - cxo. 

(17) 

(18) 
This matrix provides a measure of the screening response of the system and plays a 
central role in the following discussion. We note in passing that E is not a symmetric 
operator despite the fact that both xo and C are. 

We now consider in more detail the situation discussed by Finnis (1990). We imagine 
starting with some trial density .In which is close to the self-consistent density nsc. With 
this density we construct the potential u Z f  SE ueff[n'"] and solve (46) to obtain the 
eigenvalues &Yt and density 

The variational estimate of the energy, GEU[noUf], is obtained from (6) with bnout = 
nout - nsc, On the other hand, the Harris energy functional (Harris 1985) is defined as 

nout = q l f y 1 2 .  

EH[nl"] = &put - nin(4@ln + U:") + E~c[n ' " ]  (19) 

E H [ ~ ' " ]  - E,[n O u t  ] - - -; 11 qr, r')(nout  - nIn)(nout - n l n ) .  

This is the same result as given by Finnis (1990) but here C(r,  r ' )  is defined at the density 
nsc; the difference is immaterial since it represents a higher-order correction in the 
deviation of the density from nsc. Combining 8EU[noU'] with (20) we obtain for the 
deviation of the Harris functional from EU[nSC] the expression 

f I 
and its deviation from Eu[nouf] reduces to 

(20) 

We know from the variational principle that each of these integrals is positive definite; 
however, we are interested in the overall sign of GEH[ni"] and this cannot be surmised 
from a casual inspection of (21). 

Our expressions for 6Eu[noU'] and GEH[ni"] can be shown to be identical to those 
derived by Finnis (1990). Using u o  = 
about u z f  and nout about nsc, we find 

in (11) gives the density nout. Expanding u s f  

which establishes the linear relationship between anoU' and an'". Using (22) to eliminate 
KO, we have 

6Eu[noU'] = d 11 C(r,  r')(nout - nsc)(nout - n'") (23a) 

and from (21) 

6EH[n'"] = C(r,  r')(n'" - nsc)(nout - n'"). (23b) 

These equations are in the form presented by Finnis (1990) but the earlier expressions 
are better suited to further analysis. 
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We now consider equation (21) and use (22) to eliminate either anin or 8 n O " ' .  In this 
way we arrive at the alternative forms 

which display GEH[ni"] as a quadratic form. Equation (24a) is particularly informative. 
If we assume that an'" is u-representable, we have 

so (24a) becomes 

an'" is the density induced by dui" in the interacting system while ant  is the density that 
would be induced by Sui" in a non-interacting system having the same density nsc, On 
physical grounds one would expect a n t  to be larger in magnitude than ani" since the 
repulsive Coulomb interaction between electrons will tend to inhibit the response to an 
external potential. In other words, the electrons screen the external fields and would 
therefore be expected to respond to a lesser degree. These statements are obviously 
imprecise since the density response is non-local however, they suggest why 6EH[ni"] 
might be expected to be negative definite (note that x and xo are negative definite), 
implying that &[n] has a local maximum at n = nsc. 

To proceed we introduce a matrix representation of the various kernels. This is done 
by choosing some complete set of real orthonormal functionsh(r), for example adiscrete 
Fourier representation, in terms of which the density deviation can be expanded as 

An arbitrary quadratic form is then expressible as 

Q(x, x) Gn(r)Q(r, r') 6n(r') = xTQx II 
where x is a column vector with componentsxi and Q is the matrix representation of the 
operator Q in the given basis. In particular, we have from (24a) 

where x is the vector corresponding to 6ni"(r). We are interested in the extrema1 
properties of this quadratic form. 
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What is required is the simultaneous diagonalisation of the K and & matrices. This 
can be achieved by considering the generalised eigenvalue problem (Gantmacher 1959) 

Ku = AK,,u (28) 

ETU = Au (29) 

which according to (14), (15) and (17) is equivalent to 

i.e. A is an eigenvalue of the dielectric matrix E = x- 'xo = K K i '  (and its transpose). 
The characteristic equation defining the eigenvalues is 

det(K - AKo) = 0. (30) 
Since & is a real, symmetric matrix there exists an orthogonal transformation 
U. (U;fUo = I) such that 

U;fKoUo = Do (31) 
where Do is a diagonal matrix whose diagonal elements p l  are the eigenvalues of &. 
Since & is positive definite the eigenvalues satisfy p! > 0. Defining the matrix 
Vo = UoDO'/2 ( V i v o  = DO'), we then have 

V;fKoVo = I. (32) 

det [V$(K - AKo)Vo] = det(V;fKVo - AI) = 0 (33) 

Since Vo is non-singular we may replace (30) by the equivalent equation 

which defines the eigenvalue problem for the matrix V;fKVo. This matrix is real and 
symmetric and may be diagonalised by an orthogonal matrix V (VTV = I) such that 

VT(V;fKVo)V ST K S  = D (34) 
where the diagonal matrix D has diagonal elements A,. We note that V;fKVo is positive 
definite since xTV;fKVo x = XT& > 0, and therefore A, > 0. Using these results and 
defining x = Sy we finally obtain 

6EH[nln] = 4xT(K - KK,'K)x = iyTST(K - KKO'KISy = 4E A,(1 - A,)y?. 

X ~ C X  = xT(K - Ko)x = yTST(K - K0)Sy = yT(D - I)y = 

(35) 
I 

We next consider the quadratic form xTCx. We have 

( A t  - l)y?.  (36) 
I 

From this we see that C is positive definite if and only if the eigenvalues of the dielectric 
matrix, AL,  are greater than one. We have thus established via equations (35) and (36) 
that the Harris energy functional has a local maximum at n'" = nsc if and only if the 
operator C is positive definite. This operator is given by (10) which can be interpreted 
as an effective pair potential between two electrons at r and r'. The direct Coulomb 
interaction is clearly positive definite since 

is the electrostatic self-energy of the density distribution 6n(r).  The second term is 
expected to be negative since the effective interaction between electrons is reduced by 
the formation of an exchange-correlation hole. Although we do not have a general proof 
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of the positive definiteness of C, it is difficult to imagine that exchange and correlation 
should be so effective as to result in a tendency for the electrons to antiscreen a static 
external field. It should be emphasised that these comments pertain to the exact C; 
approximate exchange-correlation energy functionals may well generate a C that is not 
positive definite. This in fact is the case for a uniform electronic system in the local 
density approximation. 

A similar analysis of SEU[noUt] leads to the result 

SE,[n""'] = hxTCKc'KKi1Cx = h 2 A i ( A i  - 1)2 y! (37) 
i 

which is clearly positive definite as it must be according to the variational principle. With 
(35) we can now investigate the relative rates at which EO[no"'] and EH[ni"] deviate from 
their extrema1 values. Adding (35) to (37) we find 

This result has a number of interesting implications. Even with Ai > 1, the sum of 
deviations can be of either sign depending on the distribution of eigenvalues. If the 
eigenvalues are such that 1 < Ai < 2 then (38) is negative which implies that the vari- 
ational energy estimate is better in absolute value than the Harris energy estimate. On 
the other hand, if the eigenvalue spectrum extends beyond two, one cannot state 
definitively which of the two functionals is superior; their relative merits depend not 
only on the physical system being considered but also on the specific form of the density 
variation. Nevertheless, if the density anin is such that the vector y is dominated by 
components corresponding to large eigenvalues, equation (38) will be positive and the 
Harris energy functional will be closer to the exact answer than the variational estimate. 

There is a close connection between the eigenvalue distribution and the question of 
convergence of the self-consistency procedure whereby an input density dn'" is used to 
generate an output density anout (Dederichs and Zeller 1983). A measure of the deviation 
from the stationary value is provided by the inner product (an'", an'") = xTx. With 
x = Dh/2Sy = U,Vy we have 

(ani", an'") = XTX = yTy = 2 y:. 
i 

Similarly, 

(t3nout, an""') = xTCKi2Cx = 2 (Ai - 1)*y!. 
i 

(39) 

Thus if 0 < Ai < 2, (anout, 6nout) < (an'", anin) and the iterative procedure is absolutely 
convergent. An eigenvalue spectrum of this kind represents a condition of weak screen- 
ing since it implies that E is close to a unit matrix. Absolute convergence is thus 
conditional on weak screening and it is for this situation that the variational energy 
estimate is superior to that of the Harris functional. The strong screening limit is by 
definition a situation in which some of the eigenvalues exceed two and a straightforward 
iteration of the self-consistency procedure will in general diverge. In such a case the 
Harris energy functional would be expected to outperform the variational estimate. The 
examples considered by Polatoglou and Methfessel(l988) and by Finnis (1990) appear 
to belong to this category; this is not too surprising since a metallic system is one in which 
screening is certainly strong. 
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In summary, we have shown that the Harris energy functional has a local maximum 
at the true ground-state density provided the eigenvalues of the dielectric matrix are 
greater than unity. The latter property is normally expected on physical grounds; if and 
when it can be rigorously violated is not known at the present time. 

This work was supported by a grant from the Natural Sciences and Engineering Research 
Council of Canada. Useful comments by A Chizmeshya and J Harris are gratefully 
acknowledged. 
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